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Abstract

Dissipative particle dynamics (DPD) is a particle-based mesoscopic simulation technique, especially useful to study

hydrodynamic behaviour in the field of complex fluid flow. Most studies with DPD have focused on bulk behaviour by

considering a part of an infinite region using periodic boundaries. To model a finite system instead, boundary condi-

tions of the solid walls confining the system must be addressed. These conditions depend on the time and length scales

of phenomena studied, i.e., the level of coarse graining. Here we focus on a mesoscopic level at which small scale atom-

istic effects near the wall are no longer visible. At this, more macroscopic, level a solid wall should be impenetrable,

show no-slip and should not affect the fluid properties. Solid walls used in previous studies were unable to meet all three

these conditions or met them with limited success. Here, we describe a method to create solid walls that does satisfy all

requirements, producing the correct boundary conditions. The introduction of periodic conditions for curved bound-

aries makes this new wall method fit for curved geometries as well. And, an improved reflection mechanism makes the

walls impenetrable without causing side effects. The method described here could also be implemented in other particle-

based models.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The rheology in some flow problems, such as complex fluid or multiphase flow, depends on microscopic

information of the fluids present. Often, only a low-level of molecular behaviour is relevant and should be

captured by the numerical technique employed. Conventional continuum-based techniques are based on
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solving the Navier–Stokes equations and have difficulties to address effects on a microscopic scale. On the

other hand, molecular dynamics simulations give a full description on atomistic scale that is too detailed

and computationally very expensive. Mesoscopic simulation methods that are applicable in between micro-

scopic and macroscopic time- and length-scales, are therefore particularly useful in these situations. Dissi-

pative particle dynamics (DPD) is a particle-based form of such a mesoscopic method. DPD was
introduced by Hoogerbrugge and Koelman [1] to study suspensions [2]. Later, the hydrodynamic behaviour

in various other problems has been studied with DPD, involving polymers [3], multiple phases [4–6], and

heat transfer [7].

Most of these studies simulate part of an infinite region using a system confined by periodic bound-

aries. Simple shear flow with a linear velocity profile is obtained in such systems with the Lees–Edwards

boundary condition [8]. However, systems addressing more complex flow patterns or impenetrable

boundaries require real solid walls. The desired behaviour of a solid wall, and hence the boundary con-

ditions, depends on the scale at which a system is observed. On an atomic level it is likely that a wall
induces structure in the fluid, as well as locking and slip, influencing the behaviour in the order of

nanometers from the wall [9–12]. Nevertheless, when DPD is employed as particle-based flow solver

at a mesoscopic level of micrometers, the degree of coarse graining is too high to show such atomistic

effects near the wall.

The central question of the present work is how to construct a solid wall for this higher, more macro-

scopic, level of mesoscopic modelling. On this level three boundary conditions hold for a solid wall: (1)

impenetrability; no particles are allowed to enter the wall, (2) no-slip; the wall should impose the correct

velocity, and (3) the wall should not affect the fluid properties in the system. Previous studies managed
to implement impenetrability and no-slip boundary conditions, but proved to show small scale effects like

ordering near the wall, which affects a substantial portion of the system. Obviously, this is not correct from

our ‘‘macroscopic’’ point of view, since the properties of a system should not change when a wall is placed

around it.

In this paper we present a new method for constructing solid walls solving the problem of the above

mentioned wall effects and related anomalies. The method is based on a novel periodic approach that

utilizes a set of identical systems, instead of a single one. Besides, a technique is introduced to achieve

the correct interaction across a curved boundary, making it possible to model systems with curved walls.
Furthermore, we improved the reflection mechanism that guarantees the wall�s impenetrability. Together

with the existing knowledge about boundary conditions this leads to a comprehensive boundary method

for solid walls in DPD.
2. Dissipative particle dynamics

The DPD method describes a fluid system in a coarse-grained fashion by dividing it up in small inter-
acting fluid packages. Each package is represented by a DPD particle that is assumed to show the collective

dynamic behaviour of the group of molecules it contains. The evolution of the positions (ri) and impulses

(pi) of all interacting particles over time is governed by Newton�s second law of motion:
ori

ot
¼ viðtÞ;

ovi

ot
¼ f iðtÞ; ð1Þ
where the mass is left out since we will work with particle masses of 1 for simplicity. The equations of mo-

tion are solved using the modified velocity-Verlet algorithm presented by Groot and Warren [13]. The total

force acting on a particle i is composed of three pairwise additive forces, a dissipative ðFD
ij Þ, random ðFR

ij Þ
and conservative force ðFC

ijÞ
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f iðtÞ ¼
X
j 6¼i

FD
ij þ FR

ij þ FC
ij

� �
: ð2Þ
Particles interact only with particles that are within a certain cut-off radius rc. The degree of interaction
depends on the absolute distance rij between particle i and j. In the mathematical expression for the forces

the rij-dependency is taken into account by so called weight functions x(rij).
The dissipative or drag force is related to the velocity difference between the particles and acts as a resis-

tance against motion. It is given by
FD
ij ¼ �cxDðrijÞð̂rij � vijÞ̂rij: ð3Þ
Here, rij ¼j ri � rj j; r̂ij ¼ ðri � rjÞ=rij; vij ¼ vi � vj and c is a friction or drag factor. The random force
introduces the Brownian-like, chaotic character of molecules and follows as:
FR
ij ¼ rfijx

RðrijÞr̂ij; ð4Þ
in which r defines the fluctuation amplitude and fij is a random number drawn from a uniform distribution

with zero mean and Dt�1 variance, where Dt is the time step in the simulation. With the condition fij = fji
the opposing character of the force between particle pairs remains intact, ensuring conservation of momen-

tum in the model. The conservative force is a soft repulsive force representing the effective potential between

the groups of fluid molecules assembled in the different DPD particles. The expression is given by
FC
ij ¼ axCðrijÞr̂ij; ð5Þ
where a is the maximum repulsion between a pair of particles.

Español and Warren [14] have shown that the system relaxes to a Gibbs–Boltzmann equilibrium distri-

bution when the correct thermostat is applied. They proved that this holds true if the random and dissipa-

tive forces are balanced and related to the system temperature T according the fluctuation–dissipation

theorem:
xDðrijÞ ¼ ½xRðrijÞ�2; r2 ¼ 2kBT c; ð6Þ

where kB is the Boltzmann constant. The weight functions, tending to zero for rij ! rc, can have the follow-

ing simple form:
xRðrijÞ ¼ xCðrijÞ ¼
1� rij

rc
if rij < rc;

0 if rij P rc:

�
ð7Þ
The simulations in this paper are performed with rc = 1.0, kBT = 1.0, r = 3.0, a = 75/q and Dt = 0.01, after

the example of Groot and Warren [13]. All measurements are preceded by an equilibration period and all

quantities are in arbitrary DPD units, e.g. length is in rc units.
3. Flat solid walls in DPD

So far only few studies dealt with the construction of solid walls in DPD. Most of them modelled flat

walls by locally freezing the DPD particles [15–20], similar to the way solid objects such as colloidal par-

ticles are constructed [2,21,22]. The frozen particles interact as normal fluid particles, but have a fixed posi-

tion and velocity, i.e., the wall velocity. To prevent particles from entering the wall region Kong et al. [15],
and Malfreyt and Tildesley [16] chose a higher particle density in the wall, while Jones et al. [17] increased

the repulsive force from the wall particles. Both these techniques result in a strong wall repulsion and a

depletion of particles near the wall in non-ideal systems (a > 0). Later the idea of reflecting the particles
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in the wall boundary was introduced to guarantee the wall�s impenetrability [19,20]. Nevertheless, a high

wall density is still required to approach no-slip in systems with flow as shown by Revenga et al. [20], again

producing undesirable density distortions near the wall. Moreover, the frozen positions of the wall particles

in these methods intrinsically invoke ordering of particles in the vicinity of the wall, causing density fluc-

tuations and affecting the fluid behaviour near the wall. It should again be realized that such phenomena
near the wall should not be visible on the coarse grained level we aim at.

A new method was introduced by Willemsen et al. [24] who imposed the no-slip boundary condition by

continuing the velocity profile in an extra layer of particles outside the simulation box. The positions and

velocities of the particles in this wall layer are determined from the particles within the interaction distance

of the wall. The high spatial correlation between this no-slip layer and the system disturbed the particle dis-

tribution close to the wall. To avoid this they calculated the repulsive interaction from a different, second

layer of particles. By constructing this repulsive layer from the layer of particles just outside the interaction

distance of the wall the authors tried to achieve an undisturbed particle distribution. However, their meth-
od still affects the fluid properties significantly and, thus, violates one of the boundary conditions for a solid

wall we pursue here.

The effect of the Willemsen method is demonstrated in Fig. 1 for three particle densities q in the system,

where the particle and velocity distributions are visualized by density and temperature profiles, respectively.

The results are obtained for a rectangular system of 6000 particles confined between walls at x = 0 and x = 5

after averaging over 2 · 104 time steps. No external forces are acting on the system so fluid and walls are at

rest. A bounce-back reflection, recommended by Revenga et al. [20], with inversion of the acceleration (see

Section 5) makes the wall impenetrable. In such a static situation a periodic boundary shows, apart from
impenetrability, the desired wall behaviour: an average velocity of zero and no distortions near the wall.

This allows us to observe the effect of the repulsive and the no-slip wall layers from the Willemsen method

separately. First, only the repulsive layer is applied, while the dissipative and random interactions are

obtained from a periodic image of the system. Then, the no-slip layer is applied, while the repulsive inter-

actions are calculated from a periodic image.

A strong effect of the repulsive layer is observed on the density as well as the temperature. The no-slip

layer has no visible effect on the density (not shown in Fig. 1(a) for clarity) and a relatively small but not

negligible effect on temperature. Note that for low densities the distortion close to the wall influences the
whole system. The distortions are not an effect of time step size and occur also at other equilibrium tem-

peratures. Although the distortions decrease for higher particle densities in the system, they are still not
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Fig. 1. Effect of the repulsive and no-slip wall layers from the Willemsen method on the density (a) and temperature (b) in different

systems.
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negligible up to a depth of 0.5rc from the wall for q = 10. Considering a cubic simulation box of 10 · 10 · 10

the effected region is already 27% of the total simulated volume for q = 10 and even higher for lower den-

sities. To reach a level at which the wall effects can be neglected, either the system must be enlarged to

impractical dimensions, or restricted to very high densities. Both these options are computationally costly

and undesirable.

3.1. The parallel wall method

In a single phase DPD system with periodic boundaries the particle and velocity distribution is uniform

throughout the system, ensuring homogeneous inter-particle forces in the whole system without undesired

distortions at the boundary. Considering the particles within the interaction radius of a periodic boundary,

it is observed that they interact directly with particles of the periodic image across the boundary, as if they

were normal neighbours. And, just as holds for normal neighbours; action is reaction. Thus, the positions
and velocities of particles on both sides of the boundary are directly correlated. This direct correlation

across the boundary is lost in the wall method of Willemsen et al. and is apparently the origin of the

observed distortions.

An obvious way to acquire direct correlation is to utilize the principle of a periodic boundary in the con-

struction of a wall, as is done for instance in the Lees–Edwards method [8]. The Lees–Edwards method can,

however, only be applied to induce shear flow between two parallel walls moving in opposite direction. In

other, more complex, situations the flow conditions on both sides of the system are no longer proportional

and/or independent of the position along the wall. This makes it impossible to match the periodic images in
the Lees–Edwards method without discontinuities in the particle and velocity distribution. Such disconti-

nuities will give rise to distortions and slip.

In view of the foregoing discussion one can see that direct correlation and continuity of the particle and

velocity distribution are necessary across the boundary to prevent undesired distortions. Therefore, such

characteristics are essential ingredients for the modelling of a solid wall. Lets consider the particle distribu-

tion. An obvious way to achieve continuity in the particle distribution across the wall boundary is by mir-

roring the particle positions over that boundary. This creates a mirror image of the system on the other side

of the wall boundary. Applying this mirror image as wall will, however, cause a too strong correlation be-
tween the particle positions in the wall and the system [24]. A better option is, instead of using the mirror

image of the system itself, to employ the mirror image of a twin system. The dimensions and properties of

the twin systems are similar as well as the flow conditions inside. So, in fact, they model the same flow with

another set of interacting particles. Parallel calculation of the twin systems guarantees that the particle and

velocity distribution in both systems corresponds at any time. Now, placing these parallel twin systems

back-to-back, as illustrated in Fig. 2 with systems 1 and 2, they can act as a wall for each other, automat-

ically producing continuity of the particle distribution and direct correlation across the wall boundary.

Reflecting the particle velocities of the parallel twin system with respect to the wall velocity in all directions
continues the velocity profile beyond the wall, as illustrated in Fig. 2 with arrows, and produces no-slip [24].

The use of multiple systems in this parallel wall method seems computationally costly. However, each

system provides useful data for the statistical post-process which, in turn, allows one to reduce the sampling

space and/or time. Consider, for instance, a rectangular system of 5 · 10 · 5 confined between flat walls at

x = 0 and x = 5. To model the walls in this system with the parallel wall method we need two systems of

5 · 10 · 5, as illustrated in Fig. 2 with system 1 and 2. Seemingly this doubles the computational load. How-

ever, both systems model the same flow problem and system 1 and 2 can, in fact, be regarded as two halves

of one large system of size 5 · 10 · 10 or 5 · 20 · 5. Thus, to obtain results of the same precision with a
system of 5 · 10 · 5 takes twice as long or requires a system that is twice as large. So altogether the parallel

wall method takes no additional computation time. An advantage of the parallel wall method over other

wall methods is the fact that no extra particles are added to physically construct the wall. Such wall



Fig. 2. Schematic drawing to illustrate the parallel wall method for a system with walls in the x-direction. Mirror images (blank) of one

parallel system (grey) act as wall for the other and vice versa.
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particles do not provide useful information and are therefore inefficient. For the system of 5 · 10 · 5 with
walls at x = 0 and x = 5 the number of extra wall particles the Willemsen method requires is already 40% of

the particles present in the system itself. The extra computation time is of the same order. Another compu-

tational advantage is that the parallel systems are very suitable for parallel calculation.

To test the effect of the parallel wall method on the fluid properties we performed simulations in a rect-

angular system of 6000 particles (q = 5) confined by walls at x = 0 and x = 5. Again the walls are at rest and

a bounce-back reflection with inversion of the acceleration is performed whenever a particle crosses the wall

boundary. The boundaries in the y- and z-direction of the simulation box are periodic. At present we check

the overall wall performance by observing the mean force on the particles over time at different positions
between the walls. An incorrect wall performance will reveal itself directly by an imbalanced, non-zero

effective force. In Fig. 3 the effective force profile resulting from the parallel wall method is compared to

those resulting from the Willemsen method and periodic boundary conditions after averaging over

2 · 104 time steps. The performance clearly improves when the parallel wall method is used, showing the
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Fig. 3. Effective force as function of the x-position in the system, Æfi(x)æ, resulting from different boundary methods.



Fig. 4. Schematic illustration of the periodic wall method for a system with walls in the x-direction. The mirrored periodic image

(blank) of the system itself (grey) acts as wall.
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same uniformity in forces throughout the system as a periodic boundary. Consequently, the strong effect on

density and temperature is also absent.

3.2. The periodic wall method

In some special cases we can use a simplified form of the parallel wall method. When symmetry exists in

the flow pattern, the required matching particle and velocity distribution can be found within the system

itself. Then, the desired wall performance can simply be obtained from a periodic image, and is it not nec-

essary to employ an additional parallel system. This method is, henceforth, referred to as the periodic wall

method. It is for instance applicable when the walls in Fig. 2 move with the same speed in opposite direc-

tion. In such a situation, mirroring the periodic image (of the system itself) in the direction of the wall dis-

placement creates the desired matching on both sides of the system, as illustrated schematically in Fig. 4.

Other suitable examples in this respect are Poiseuille flow and systems where the walls move with the same
speed in the same direction. In these situations the flow conditions on both sides of the system match

exactly and the wall can be constructed directly from the periodic image.

3.3. Walls in more than one dimension

In the methods employed to define a boundary in DPD care must be taken that a particle never interacts

with itself and no more than once with another to prevent spurious correlations. As for periodic bound-

aries, this restricts the parallel and periodic wall method to systems where the wall boundaries are at least
rc and 2rc apart, respectively. It also implies that multiple parallel systems are required when a system is

confined by walls in two or three directions. With walls in two directions, for instance, a particle in the cor-

ner of the simulation box interacts with three systems across a wall boundary. Like each particle the corner

particle should feel particles within its interaction radius that are all different. In the parallel wall method

this can only be guaranteed, if the three systems across the wall boundary are three different parallel sys-

tems. Hence, a total of four systems should be simulated. Fig. 5(a) illustrates how these systems are

matched in the parallel wall method. For the same reason, a set of eight systems is required, when the do-

main is confined by walls in all directions. Often, though, a plane of symmetry is present in the flow, which
enables us to halve the number of required systems by applying the periodic wall method.

Once again no-slip is produced by continuing the velocity profile across the wall boundaries inside the

parallel systems. It is obvious that parallel system 2 in Fig. 5(a) sets up the right wall and parallel system 3

the top wall for system 1. Parallel system 4 sets up the wall corner and can be understood as part of the right

wall or part of the top wall. This makes it unclear which wall velocity the particles of corner system 4 should

impose. The most simple option is to split the corner system in two, grouping the particles to the nearest

wall and let them impose the velocity of that wall. However, this will lead to interactions across the top wall
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n the right corner system 4 is divided into a region that belongs to the right wall (hatched) and top wall (blank) for particle i of system
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with particles of the right wall and vice versa. More consistent is, therefore, to assign particles in a corner

system to the wall across which they interact. The particles in system 4 are, thus, assigned to the right or top

wall based on the position of the particles in system 1, as shown schematically in Fig. 5(b) for particle i. The

straight line from i through the point where system 1 and 4 touch divides corner system 4 into a part that

belongs to the right and the top wall for this particle.
4. Curved solid walls in DPD

As far as we know, there is only one report in literature concerning curved walls in DPD [23]. The curved

walls in that study exist by means of a bounce-back reflection alone, without (frozen) particles physically

constructing it. This method results in an accumulation of particles at the wall, instead of a depletion, and

similar density distortions as the flat high density walls of frozen particles. The new boundary method for
solid walls introduced in Section 3 would offer a good alternative here, but refers to flat walls. In this section

we will present a technique that makes them fit for curved walls as well.

In the parallel and periodic wall method the walls are formed, respectively, by the mirror image of a

parallel system and the periodic image of the system itself. The presence of a curved boundary makes it

impossible to connect the system to such mirror or periodic images in a close-fitting manner. This means

that there will be undesirable gaps. However, such a close connection can be recovered by folding the image

around the curved boundary. When symmetry is present the periodic mirror image of the system itself can

be employed or else the mirror image of a parallel system. The folding procedure is illustrated in Fig. 6(a)
for a cylindrical geometry with coordinates (r,h,z). The cylinder has a radius of Rcyl and is infinite in the z-

direction. The figure shows the cross-section through the cylinder, marked by the thick black line, and the

positions of the particles close to its curved boundary. Since the cylinder is axisymmetric the periodic wall

method can be applied, i.e., constructing the wall from the periodic image of the system. However, to pre-

vent particles from interacting with themselves across the boundary a periodic mirror image should be em-

ployed here instead of a periodic image. Fig. 6(a) shows a part of the periodic mirror image, drawn in grey.

It is obtained by placing the cylinder and its periodic image next to each other and mirroring the particle

positions of the periodic image in the plane h = 0. Now, the layer of particles within the interaction radius rc
from the boundary of the periodic mirror image can be folded around the curved boundary of the original

system, yielding the desired close connection. Observing the transition of particle j to its periodic mirror

image j 0 to j00 after folding, it becomes clear that the whole folding procedure is, in fact, nothing else than
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Fig. 6. Schematic representation of the folding (a) and scaling (b) procedures to obtain the correct interaction across a curved

boundary. The filled black dots are system particles within the interaction radius of the curved boundary. The unfilled black dots are

the positions of the particles across the boundary after folding.
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making the system periodic in the direction perpendicular to the boundary. This direction is, in this case,

equal to the radial direction, because the radius of curvature Rj is constant, and equal to the radius of the

cylinder.

Nevertheless, folding a curved image around a curved exterior alters the interparticle distances, and thus
the particle density, inside that image as a function of curvature and distance perpendicular to the system

boundary. The resulting density difference across the boundary will hamper the correct wall behaviour in

our wall methods. By scaling the positions of the particles across the wall boundary for every interaction

with a system particle we can compensate for the alterations. Scaling of particle positions should only be

performed in the tangential direction along the wall, because the interparticle distances normal to the wall

stay unchanged during the folding operation. Fig. 6(b) illustrates the scaling procedure for a cylindrical sys-

tem by observing the interaction between system particle i and particle j00 across the boundary. The number

and magnitude of interactions a particle i near the curved boundary experiences are restored to normal bulk
values by scaling the positions of all particles across that boundary in the direction along the boundary and

relative to the position of i. While the h-coordinate gives the position along the cylinder�s boundary the scal-
ing rule has the following form:
hscaledij ðRj;DjwÞ ¼ hij �
Rj � Djw

Rj þ Djw
¼ hij �

2Rcyl � rj
rj

; ð8Þ
where hij is the distance between a system particle i and a particle j across the boundary in the h-direction,
Djw is the distance of particle j normal to the wall and rj is the radial position of particle j. In Fig. 6(b) scal-
ing places particle j00 just within the interaction range of particle i, which nullifies the effect introduced by the

folding step. Similar to flat walls, no-slip at curved walls is obtained by continuing the velocity profile

across the boundary, and impenetrability by a reflection mechanism. In Section 6 the no-slip condition

at curved walls is tested for the gravity driven flow through a cylindrical tube.

The curvature in two dimensions (e.g. a sphere) is described by two radii of curvature and, using spher-

ical coordinates (r,h,/), requires scaling in both the h- as well as the /-direction. Particles are, still, prohib-
ited to feel another particle twice within their interaction radius. The method described in this section is,

thus, only sound when the radius of curvature is larger than rc. Note that this technique is applicable
for all sorts of curved boundaries.



D.C. Visser et al. / Journal of Computational Physics 205 (2005) 626–639 635
5. The reflection mechanism

In the parallel and periodic wall method the walls are formed by images of twin systems or the system

itself. Therefore, the wall region differs in no way from the fluid region and nothing prevents the particles to

leave the system and enter the wall. For an impenetrable solid wall this should be avoided, which can be
realized by reintroducing the particles that cross the wall boundary into the system. Revenga et al. [20]

investigated different reintroduction mechanisms and found that only a bounce-back reflection produces

the no-slip boundary condition. Although this is still true for the wall methods we introduced here, the cur-

rent definition of this reflection leaves room for improvements.

First of all, the algorithms solving the equations of motion require the particle�s position, velocity and

acceleration. The change of these quantities during a reflection should, therefore, be defined. To our knowl-

edge, previous studies only considered the change in position and velocity during the reflection process.

When the acceleration of reflected particles is left unchanged after a bounce-back, we observe a significant
temperature distortion close to an impenetrable boundary, i.e., the area where the reflections take place.

However, when the direction of the acceleration is inverted, just as the velocity, these anomalies are absent.

This is shown in Fig. 7, where we plotted the temperature in the region 0.1rc from an impenetrable bound-

ary at rest for different densities in the system. Clearly, inverting the direction of the acceleration is the pre-

ferred strategy during a reflection step. With this stated, the definition of the reflection mechanism is

complete.

Furthermore, it should be noted that a bounce-back reflection places the particles back in an unnatural,

and in some cases unfortunate, fashion. Just as in real systems the DPD particles tend to migrate to a more
favourable position, minimizing the energy in the system. However, a bounce-back reflection reverses this

motion, redirecting a particle towards the less favourable position. This discrepancy has no consequences

when walls exist in one dimension, but induces an artificial and self-enhanced build up of particles when the

fluid flows in the direction of a wall confined corner. This is a situation occurring for example in a lid driven

cavity, where the moving lid forces the particles towards the corner of the cavity. The pressure will increase

and a large number of particles will jump out of the system at this corner. These particles are systematically

placed back by the bounce-back mechanism in the unfavourable high pressure corner. The probability that

these particles leave the system in the next time step, followed by another reintroduction, is high. Thus, we
see that the particles are more or less trapped in the corner region. A solution is offered by a thorough anal-

ysis of the bounce-back method, which reveals that its no-slip action relies on the velocity treatment and

positioning perpendicular to the wall. This allows a more straightforward and natural positioning that
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Fig. 8. Bounce-forward (it(bf)) versus bounce-back (it(bb)) reflection for a particle i that jumps out of the system in a time step Dt.
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preserves the displacement tangential to the wall during a reflection, while the position perpendicular to the

wall and the velocity change according the original bounce-back mechanism as shown in Fig. 8. This

bounce-forward shows the same no-slip as a bounce-back, as will be shown in Section 6, but cancels the

unrealistic accumulation of particles in the corner of a lid driven cavity.
6. The new boundary method put into practice

In this section the new boundary method for solid walls is put into practice. First, we verify if this new

method complies with the no-slip boundary condition. Then, we calculate the development of a velocity

profile in two different geometries, a rectangular geometry with flat walls and a cylindrical geometry with

curved walls.

6.1. No-slip boundary condition

The new boundary method is tested with respect to the no-slip condition by computing the steady veloc-

ity profile for the shear flow between flat walls. The left wall at x = 0 is at rest, while the right wall at x = 10

is moving at a constant speed V wall
z ¼ 2:00. In this situation, the amount of velocity slip at the walls Vslip

depends on the distance Lx between the walls and the imposed shear rate V wall
z =Lx. The simulated velocity

profiles are linear in the whole region between the walls. Therefore, we defined V slip as V wall
z minus the slope

of the calculated velocity profile times Lx, where the slope is determined by means of linear regression. Fig.

9 shows the amount of slip for different densities in the system. A small amount of slip is observed at low
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Fig. 9. Performance of the new boundary method for solid walls with respect to the no-slip condition at different densities in the

system.
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densities that depends on the fluid�s compressibility. For ideal system (a = 0) slip is negligible over the whole

density range. Fig. 9 shows also that bounce-back and bounce-forward reflections have the same effect on

the no-slip condition.

6.2. Flow between flat and curved walls

The development of a velocity profile in two typical flow situations is calculated. In the first situation

the left wall of a rectangular system is instantaneously set in motion with a constant velocity

V wall
z ¼ 2:00. In the second situation a gravitational force of g = 0.08 is switched on in a cylindrical sys-

tem. The fluid, initially at rest, is accelerated in both cases until a steady laminar flow is reached. The-

oretical solutions exist for the velocity distribution of the time dependent start-up process as well as the

steady-state [25].

Simulations are performed with a set of 120,000 particles (q = 5) between walls that are 10rc apart in
case one (Lx = 10) and a wall with a radius of curvature equal to 10rc in case two (Rcyl = 10). The kine-

matic viscosity m of these systems (required in the theoretical solutions) has a value of 0.257 and is

computed from a stationary shear flow simulation (see for instance [8]) using Lees–Edwards boundary

conditions. Case one requires the parallel wall method while the symmetric flow pattern in case two

permits the application of the periodic wall method for curved boundaries as described in Section 4.

Therefore, two parallel systems of 60,000 particles are used in the first situation and a single system

of 120,000 particles in the second. A bounce-forward reflection with inversion of the acceleration is per-

formed whenever a particle crosses the wall boundary. Fig. 10 plots two start-up velocity profiles and
the stationary profile for each situation. All profiles are normalized with the maximal velocity V max

z of

the fully developed theoretical flow. The dimensionless time s is given by m � t=L2
x for case one and

m � t=R2
cyl for case two. The agreement between the simulated and the theoretical profiles is excellent

for both the unsteady and steady-states. This proves that the solid walls constructed with the new

boundary method yield the correct velocities in instationary situations. It also shows that the correct

velocity is imposes at curved walls, validating our technique to implement curved boundaries. The

undisturbed density and temperature profiles in both flow situations (not shown here) confirm once

more that the walls have no effect on the fluid properties.
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Fig. 10. Comparison of simulated (symbols) and theoretical (lines) velocity distributions for the velocity development in two flow

situations with different geometry: (a) flow between flat walls; (b) flow through a tube.
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7. Discussion

In this paper we studied the wall behaviour in a single phase system where the wall is constructed from

the same material as the fluid. In reality the wall material differs and has its own specific interactive forces.

As a result, the phases in a multiphase system may have a different affinity with the wall. Such a microscopic
phenomenon has a macroscopic effect on the interface between and transport behaviour of the fluids pres-

ent. It is, for instance, responsible for the rise of the water interface near a glass wall. We may expect that

adsorption/desorption, motion and contact angle of droplets or fluid portions are strongly influenced by the

interaction with the wall. Incorporation of the wall material in the solid wall method is, thus, of special

importance for multiphase systems and a next challenge.

Although the present work employs the DPD simulation technique, the introduced new wall method

could also be applied in other particle-based techniques like smoothed particle hydrodynamics or molecular

dynamics. Furthermore, some of our ideas to implement boundary conditions for solid walls could proof
valuable in the construction of solid objects such as colloids.
8. Conclusion

The objective of our work was to improve the modelling of solid walls in the dissipative particle dynam-

ics simulation technique. Therefore, we introduced a new wall construction method that makes use of par-

allel twin systems which set up the wall by a back-to-back placement. This automatically generates a
smooth particle and velocity distribution across the wall boundary as well as correct interparticle correla-

tions. Hence, we are able to simulate a wall that meets the no-slip boundary condition without affecting the

properties of the system. To make our new wall method applicable to curved boundaries, we developed a

folding and scaling procedure to connect curved systems with their periodic image or the image of a parallel

system. This allows one to model curved walls as well. A bounce-back reflection ensures the wall�s impen-

etrability but it may introduce side effects. If the tangential displacement to the wall is left unaltered for

particles that are reintroduced, the bounce-back method transforms into a bounce-forward method that

shows the same no-slip but lacks these side effects. Both reflection methods leave the thermodynamics of
the system intact when the acceleration of a particle is changed in opposite direction after a reflection.

The new boundary method meets all requirements for solid walls at higher densities, but shows some veloc-

ity slip at low densities for non-ideal systems. Correcting this flaw as well as constructing solid walls for

multiphase systems are future challenges.
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